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Abstract-Mixed convection of air with Pr = 0.7 between two horizontal concentric cylinders which are 
held at different uniform temperatures is numerically investigated. The forced flow is induced by the cold 
outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of annulus. 
Investigations are made for various combinations of Ra, Re and CJ (= diameter of inner cylinder/gap width) 
in the range of Ra < 5 x 104, Re < 1500, and 0.5 < cr < 5. The flow patterns can be categorized into three 
basic types according to the number of eddies : two-eddy, one-eddy, and no-eddy flows. A map of the three 
flow regimes is constructed on the Ra-Re plane. Characteristics of flow patterns and heat transfer are 

elucidated. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

The fluid flow and the heat transfer in an annulus 
between two horizontal concentric cylinders have 
attracted considerable attention because of the theor- 
etical interest and its wide engineering applications 
such as thermal energy storage systems, cooling of 
electronic components, and transmission cables. 
Comprehensive reviews on the study of natural con- 
vection phenomena were presented by Kuehn and 
Goldstein [ 11, and Gebhart et al. [2]. The flow features 
of natural convection of a fluid with high Prandtl 
number (of order 1 or larger) have been disclosed 
experimentally and numerically. Powe et al. [3,4] and 
Rao et al. [5] investigated flow patterns. They found 
that the free convective flow of a high Prandtl number 
fluid can be categorized into four basic types : a steady 
two-dimensional flow with two crescent-shaped 
eddies, a two-dimensional oscillatory flow, a three- 
dimensional spiral flow, and a two-dimensional mul- 
ticellular flow. Recently, Yoo [6] investigated the exis- 
tence of dual steady states for a fluid of Prandtl num- 
ber 0.7 (air). 

Thermal convection of fluids with low Prandtl num- 
ber such as liquid metals, exhibits multicellular flow 
patterns for high Rayleigh numbers [7-l 11, In particu- 
lar, Fant et al. [lo] and Yoo et al. [l l] observed oscil- 
latory like-rotatin,g multicellular flow patterns that 
originated from the hydrodynamic type of instability. 

Some other authors have considered a non-uni- 
formly heated annular fluid layer [12], the condition 
of a constant heat flux at the inner cylinder [ 131, a 
conjugate problem [14], cold water [15], and transient 
convection [ 16, 171. 

In this numerical study, a two-dimensional mixed- 

convection problem in a horizontal annulus is inves- 
tigated. The inner cylinder is hotter than the outer 
one, and the forced flow is induced by the outer cyl- 
inder which is rotating slowly with constant angular 
velocity with its axis at the center of annulus. Up to 
date, most works for mixed-convection problems in 
rotating systems have been performed for the flows 
in vertical cylindrical annuli [18-201. Relatively few 
studies, however, have been made for the flows in 
horizontal annuli. A few authors [21-231 have studied 
mixed-convective flows within a horizontal annulus 
with a heated rotating inner cylinder. When the inner 
cylinder or both of the inner and outer cylinders are 
rotating, the centrifugal effects created by the rotating 
cylinder can lead to three-dimensional flows with 
Taylor vortices [24]. Fusegi et al. [21] and Lee [22, 
231 purposely limited the calculations to a range of 
parameters that would exclude this possibility. They 
considered a few cases of parameters ; and the tran- 
sition phenomena of flow patterns and the effect of 
aspect ratio were not investigated. On the contrary, 
the Couette flow between two horizontal concentric 
cylinders, with the stationary inner cylinder and the 
outer cylinder rotating about its axis at constant angu- 
lar velocity (a) is proved to be stable, according to 
linear stability theory, for all values of R [24]. When 
the inner cylinder or both of the inner and outer cyl- 
inders are rotating, however, the linear stability theory 
tells that the flow is not always stable for all values of 
R. It thus appears that a mixed-convection system 
with the stationary inner cylinder and the outer cyl- 
inder rotating is an appropriate configuration to inves- 
tigate the effect of forced flow on the two-dimensional 
natural convection in a horizontal annulus. There is, 
of course, a possibility of three-dimensional flows for 
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NOMENCLATURE 

Q diameter of inner cylinder 
e,, eg unit vectors in the radial and angular 

directions, respectively 
g acceleration of gravity 
J Jacobian 
L gap width of the annulus, R, - Ri 

N%VId Nusselt number of pure conduction 
state 

Nu,, Nu, local Nusselt numbers at the inner 
and outer cylinders, respectively 

Nui, Nu, mean Nusselt numbers at the inner 
and outer cylinders, respectively 

Nu overall Nusselt number, (G+ Nu,)/2 
Pr Prandtl number, v/X 
P dimensionless pressure 
Q net circulation of fluid in the 

direction of cylinder’s rotation, 
IY,-Y’,l 

Ri, R, radii of the inner and outer cylinders, 
respectively 

Ra Rayleigh number based on the gap 
width, ccg( Ti - T,,)L3/Xv 

Re Reynolds number, R,RL/v 

Re, critical Reynolds number at which 
transition of flow pattern occurs 

r dimensionless radial coordinate 
ri, r, dimensionless radii of the inner and 

outer cylinders, respectively 

TQ normalized torque loaded at the 
outer cylinder with respect to the torque 
obtained with the Couette velocity 
distribution 

t dimensionless time 
r,, T, temperatures at the inner and outer 

cylinders, respectively 
u dimensionless velocity vector 
u, 0 dimensionless velocity components 

in the radial and angular directions, 
respectively. 

Greek symbols 
o! coefficient of thermal expansion 
rl stretched coordinate in the radial 

direction 
e dimensionless temperature 
X thermal diffusivity 
V kinematic viscosity 
PO mean density 
0 ratio of the inner cylinder diameter 

to gap width, Di/L 

4 angular coordinate 
Y dimensionless streamfunction 
‘I’,, Y1 values of the streamfunction at the 

inner and outer cylinders, respectively 
n angular velocity of the outer cylinder 
0 dimensionless vorticity. 

nonlinear disturbances at sulliciently high Ra and Re. 
In the mixed-convection problem, the forced flow can 
aid or oppose the buoyancy-induced flow. In the pre- 
sent configuration, both aiding and opposing effects 
exist. 

The objective of the present study is to investigate 
the effect of forced flow induced by the rotating outer 
cylinder on the characteristics of heat transfer and 
fluid flow of the two-dimensional natural convection 
within a horizontal annulus. Investigations are made 
for various combinations of Ra, Re and a in the range 
of Ra < 5 x 104, Re < 1500 and 0.5 < a < 5 with 
Pr = 0.7. Unlike the case of rotating inner cylinder 
[21-231, the flow patterns can be categorized into three 
types according to the number of eddies : two-, one- 
and no-eddy flows. It would be of interest to inves- 
tigate the transition phenomena of flow patterns and 
the characteristics of heat transfer. This study has 
computed numerous cases of the parameters, and a 
map of steady-state flow regimes on the Ra-Re plane 
has been constructed. Characteristics of flow patterns 
and heat transfer at the walls are elucidated. It is 
observed that the variation of overall heat transfer 
with respect to the angular velocity of cylinder is 
closely related to the flow patterns. For the relatively 
small Reynolds number in the regime of two-eddy 

flow, the rotation of cylinder has little effect on the 
overall heat transfer at the walls, although the dis- 
tribution of local Nusselt number is significantly alt- 
ered from that of pure natural convection. As Re 
approaches the transitional value between two- and 
one-eddy flows, however, the overall heat transfer is 
drastically reduced. The transitional Reynolds num- 
ber between two- and one-eddy flows for small Ray- 
leigh number is not greatly affected by the geometrical 
parameter of concentric annulus (0.5 < a < 5). 

ANALYSIS 

The geometry of the problem and the coordinate 
system are shown in Fig. 1. The fluid is contained 
between two infinite horizontal concentric circular cyl- 
inders, which are held at different uniform tem- 
peratures of Ti and To (Ti > To). The inner cylinder is 
fixed, but the outer cylinder is rotating slowly in the 
counter-clockwise direction with constant angular vel- 
ocity (a). Density change in the fluid is neglected 
everywhere except in the buoyancy, and all the other 
physical properties of the fluid are assumed constant 
(Boussinesq approximation). Viscous dissipation in 
the energy equation is also neglected. We consider 
a two-dimensional problem, and use the cylindrical 



Fig. I. Problem configuration. 

coordinates (r, 411, the angular coordinate C$ being 
measured counter-clockwise from the upward vertical 
through the center of the cylinders (Fig. 1). The equa- 
tions governing conservation of mass, momentum and 
energy are put into non-dimensional form by taking 
the characteristic length, time, velocity, pressure, and 
temperature as L, L/V, V = R,Q poV2, and (T- T,), 
respectively. We let Pr = v/x, Re = R,BLIv, and 
Ra = ug(T- T&‘/xv denote the Prandtl, Reynolds 
and Rayleigh numbers, respectively. The dimen- 
sionless governing equations are 

v-u=0 (1) 

g +(UT)” = -vp+ $72” 

-t- +$ &xN$)e, - sin(4)ed (2) 

$(“.v)e= &?v2e 
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where the vorticity w, streamfunction Y, Jacobian 
J(f, g), and Laplacian Vz are 

w = j&W - $-J(U), ay 
U=r3 

ay 1 afag 
u= --g> JcLs)=, s-J-q-- ( af ai 

> 

a* 
V*=& rf-r +- 

( ) r* a4*' 

The boundary conditions on the two walls are 

ay 
Y=Y,, ar=O, a=-$, e=i 

(9) 

at r = ri 

8 = 0 at r = ro. (11) 

In the above boundary conditions (10) and (1 l), 
values of the streamfunctions, Y, and Y’, are not 
given, but are to be determined. In the present prob- 
lem, we can let Y’, = 0 without loss of generality, and 
Y2 is determined to satisfy the condition of the single 
value of pressure on the wall [25]. On the surface of 
the wall where u = 0 and u = constant, the following 
equation is derived from the azimuthal component of 
momentum equation. 

1 ap 1 ao Ra __=--_ 
raq5 Re ar 

-@sin+ 
PrRe* 

(12) 

Integration along the surface of wall yields 

(13) 

with the boundary conditions 

u = u == 0, e = 1 at r = ri (4) 

u=o, t’=l, e = 0 at r = ro. (9 

On the introduction of the streamfunction Y, con- 
tinuity equation (1) is satisfied identically. And the 
dimensionless equations governing the two-dimen- 
sional convection .in terms of the vorticity w and stre- 
amfunction Y are written as follows : 

because 0 = constant on the wall. 
The dimensionless heat transfer rate of pure con- 

duction in the absence of fluid motion is : 

aa 
- = J(Y, co) + $v’w at 

1 
N~cond = ~ 

ln(r,/rJ 
(14) 

The local Nusselt number is defined as the actual heat 
flux divided by NuCond. 

Nu,($) = - r g 
( )i 

Nucond at r = ri (15) 

- j$& sin(4) $ +cos(f$) $$ 1 (6) 
w = -VY (7) 

Nucond at r = r. (16) 

- - 
and the mean Nusselt numbers, Nui and Nu,, are given 
by 

2% 

(8) 
Nui=; NUi (4) d4 (17) 

-‘I .I0 
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(18) 

In steady states, Nu, and Nu, are presumably of the 
same value. 

Equations (6)-(13) are numerically solved by the 
similar finite difference scheme used in Yoo and Kim 
[26] for spatially periodic flow. Equations (6) and (8) 
are cast into finite difference form using the leap-frog 
method [27] of Dufort-Frankel for the diffusion and 
time derivative terms, and central differencing for the 
Jacobian. The Poisson equation for the steamfunction 
is discretized by use of five-point formula. Because the 
computational domain is rectangular, the discretized 
Poisson equation is solved by the direct method of 
Buzbee et al. [28] which uses cyclic even-odd 
reduction method. The algorithm of Buzbee et al. [28] 
is known to be extremely fast and accurate. In the 
azimuthal direction, a uniform grid is employed, and 
in the radial direction, the following coordinate stret- 
ching is utilized. 

r = r_ + I 
’ 2 

1 + tanh {CC% - 1)) 
tanh(C) 1 
withC = 1.5, 0 < rl < 1. (19) 

The solution was considered to have converged to 
the steady state, when the absolute value of the 
maximum relative difference between two consecutive 
time steps was less than a prescribed value E : 

~~~ f;: ’ -f;j < E  forf= w, y I I f::’ 

and 0 with&< 10-3. 

For most cases, E was set equal to 10e4. The time step 
At was taken in the range of 10e5 < At < 5 x 10e3. At 
the initial stage, a small time step At N 10m5 was used, 
and later on At was changed to a larger value 
At 2: 10p3. According to the values of inverse relative 
gap width (a) and Rayleigh number (Ra), different 
grids were used: the (TX 4) meshes of (65 x 64), 
(45 x 64) or (65 x 32). 

RESULTS AND DISCUSSION 

Computations were performed for various com- 
binations of Ra, Re and u in the range of Ra < 5 x 104, 
Re < 1500, and 0.5 < a < 5, with Pr = 0.7. The main 
investigations were made for an annulus of a = 2. To 
check the numerical method, the problem of pure 
forced convection (Ra = 0) and that of pure natural 
convection were solved. The two-dimensional forced 
convection problem yields the circular Couette flow 
with u = 0, v = V(r), and p = P(r), where V(r) is 
determined from the azimuthal component ofmomen- 
turn equation. The solution is 

V(r) = Arf $ (20) 

where 

A=r, 
rz - r;? 

) B=_J!L. 
ri - rf 

This gives 

lo -Y2 = V(r) dr = A(ri -rf)/2+Bln(r,/rJ. 

(21) 

Some values of the numerically calculated ‘P2 for 
cr = 2 are listed in Table 1. It shows that as the number 
of grid points is increased, the error approaches zero. 
We can see that the (r x 4) grid of (35 x 32) yields 
sufficiently accurate result. This study, however, used 
65-grid points in the radial direction, for most cases, to 
resolve the thin boundary layer near the outer cylinder 
sufficiently. The results of the pure natural convection 
problem were compared with those obtained by 
Kuehn and Goldstein [l]. They showed good agree- 
ment with each other. 

Firstly, the flow patterns for small Rayleigh number 
are presented. The flow field induced by pure buoy- 
ancy force consists of two kidney-shaped eddies which 
are symmetric with respect to the vertical axis 4 = 0. 
When the outer cylinder is rotating, the symmetry is 
broken. The variation of flow patterns with respect to 
Reynolds number is shown in Fig. 2 for Q = 2 and 
Ra = 1000. For small Reynolds number, the two sym- 
metric eddies created by the pure buoyancy force are 
slightly altered by the forced convection [Fig. 2(a)]. 
There is net circulation of fluid around both of the 
inner and outer cylinders. The circulation for small 
Rayleigh number (Ra < 1000) is smooth and is similar 
to that observed by Wang and Bau [29] in the natural 
convection of low Rayleigh number in an eccentric 
annulus. In the region of R < 4 < 2x, the forced flow 
near the outer cylinder opposes the buoyancy-induced 
flow. The eddy in that region, however, persists when 
the forced flow is weak. As Reynolds number 
increases, the eddy becomes more strongly suppressed 
by the forced flow [Fig. 2(b)], and above a certain 
critical value it disappears [Fig. 2(c)]. At the higher 

Table 1. Numerically determined values of YZ when Ra = 0 
and u = 2 with 32-grid points to the azimuthal direction 

Number of r-grid 
points 

Calculated 
-y* 

Percent 
error 

15 0.5474 1.766 
25 0.5413 0.632 
35 0.5396 0.316 
45 0.5389 0.186 
55 0.5386 0.130 
Exact 0.5379 
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Fig. 2. Streamlines for several Reynolds numbers when (T = 2 
and Ru = 1000: (a) Re= 5; (b) Re= 10; (c) Re = 20; 
(d) Re = 100. The cross in (b) indicates the center of weak 

eddy. 

Reynolds number, the remaining eddy in 0 < 4 < K 
also disappears [Fig. 2(d)]. 

As Ra is increased, the circulation of fluid around 
the inner cylinder becomes complex. The flow patterns 
at Ra = lo4 with cr = 2 are presented in Fig. 3. For 
Ra < 104, the streamline of Y = 0, which separates 
the two eddies always encompasses the large eddy, 
and with increased speed of rotation the separation 
point on the upper portion of inner cylinder moves 
in the direction of cylinder’s rotation. When 
Ra > 2 x 104, however, the separating streamline does 
not always encompass the large eddy, and the sep- 
aration point does not always move in the same direc- 
tion of cylinder’s rotation with increased speed of 
rotation. For example, the flow patterns at 
Ra = 5 x lo4 are presented in Fig. 4. When Re = 100, 
the point of Y’,,, (indicated by the cross) locates in 
the upper portion of annulus [Fig. 4(a)]. As Re is 
increased, it moves in the direction of cylinder’s 
rotation, and the large eddy grows further in size. 
During this course, the separating streamline on the 
top of annulus becomes to be deflected right due to 
the increased drag of large eddy in the right side of 
annulus [Fig. 4(b)]. And finally, the separating 
streamline of Y = 0 encompasses the small eddy, at 
Re = 400 [Fig. 4(c)]. For Re < 600 [Fig. 4(d)], with 
increase of Re the separation point on the inner cyl- 
inder moves in the opposite direction of cylinder’s 
rotation. This is caused by the increased drag of large 
eddy. As Re is increased further, however, the sep- 
aration point moves in the same direction of cylinder’s 
rotation [Fig. 4(e)]. Finally, the small eddy disap- 
pears, and the streamline of Y = 0 encompasses the 
remaining eddy, at Re = 900 [Fig. 4(f)]. 

The isotherms presented in Figs 3 and 4 also show 
the above characteristics well. It is interesting that 

@@ 
(c) Re=300 

Streamlines Isotherms 
Fig. 3. Streamlines and isotherms for several Reynolds num- 
berswhencr=2andRa=104:(a)Re=100;(b)Re=200; 

(c) Re = 300; (d) Re = 500. 

the thermal plumes near the upper portion of inner 
cylinder for Ra = 5 x lo4 in Fig. 4(b-d) are tilted in 
the opposite direction of cylinder’s rotation. For small 
Rayleigh number (Ra < 103, the thermal plume is 
always tilted in the same direction of cylinder’s 
rotation (Fig. 3). In general, the forced flow tends to 
stratify the temperature field in the radial direction. It 
is to be noted that the isotherms of one-eddy flow 
constitute nearly concentric circles. 

As shown in Figs 2-4, the flows can be categorized 
into three different patterns according to the number 
of eddies : two eddies [Fig. 2(a)], one eddy [Fig. 2(c)], 
and no eddy [Fig. 2(d)]. The map of the three flow 
regimes for rr = 2 is presented in Fig. 5. In the con- 
duction-dominated regime of Ra < 1000, the bound- 
ary lines are approximated as Re = Cl RaC2. The 
approximate values of C, and C, are (C,, C,) = (0.009, 
1.08) and (0.13, 0.95) for the transition between two- 
and one-eddy flows and that between one- and no- 
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Streaklines Isotherms 

~~ 
(f)Re=9OO 

@@ 
(s)Re= 1300 

Streamlines -’ Isotherms 
Fig. 4. Streamlines and isotherms for several Reynolds numbers when u = 2 and Ra = 5 x 104: 
(a) Re = 100 ; (b) Re = 300 ; (c) Re = 400 ; (d) Re = 600 ; (e) Re = 850 ; ( f) Re = 900 ; (g) Re = 1300. The 

cross in the plot of streamlines indicates the point of Y’,,,. 

eddy flows, respectively. As Ra is increased, the tran- 
sitional Reynolds number between two- and one-eddy 
approaches that between one- and no-eddy. 

The flow patterns have been investigated carefully 
with the plots of streamlines and angular velocity of 
fluid. For a fixed Rayleigh number, a solution for a 
small Reynolds number was obtained, and for most 
cases, the solution at the higher Reynolds number was 
found by letting the initial conditions be the solution 
of lower Re previously obtained. It has also been tried 
to obtain the solutions for lower Re flows from the 
previously obtained higher Re flow solutions. Both 
methods yielded identical results for the same par- 
ameters. That is, hysteresis phenomena have not been 
observed. 

In the mixed-convective system, the forced flow can 
aid or oppose the buoyancy-induced flow. In the pre- 
sent configuration, both aiding and opposing effects 
exist (Fig. 1). The distributions of angular velocities at 

q!~ = 42 and 3x/2 are presented in Fig. 6 for Ra = 100, 
1000,2000,5000 and 10000, with Re = 20 and Q = 2. 
There appears no-eddy at Ra = 100, but one-eddy at 
Ra = loo0, and two-eddies at Ra = 2000, 5000 and 
10 000 : for a fixed Reynolds number, there occur tran- 
sitions of flow patterns from no- to one-eddy and from 
one- to two-eddies, as Ra increases (Fig. 5). All the 
fluid move in the direction of cylinder’s rotation for 
small Rayleigh number. At Ra = 100, the velocity dis- 
tribution is nearly identical to that of Couette flow. As 
Ra increases, the velocity profile becomes increasingly 
skewed by buoyancy force, and the slope of the velocity 
distribution near the walls becomes steep. At a large 
Rayleigh number, the velocity at 4 = 742 adjacent to 
the hot inner cylinder becomes negative [Fig. 6(a)- 
Ra = lOOO], and the velocity at q?~ = 3x/2 also becomes 
negative at the higher Rayleigh number pig. 6(b)- 
Ra = 2000,5OOO, 10 0001. The variation of the velocity 
profile with respect to Rayleigh number (Fig. 6) 
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Fig. 5. Classification of flow regimes according to the number 
of eddies on the Ra--Re plane when d = 2. The transition of 
flow patterns occurs at the Reynolds number betwen the 

error brackets. 

64 

(b) 

T r r, 
Fig. 6. Distribution of angular velocities at 4 = x/2 (a) and 
4 = 3x//2 (b) as a function of Rayleigh number when D = 2 

and Re = 20. 

resembles that observed by Aung and Worku [30,31] 
in the mixed convection in a vertical channel, in which 
flow reversal similar to that in Fig. 6(a) was found. 

Torque = 
s 

2n(r+)d& r=r- ir f 
0 

(22) 
0 

Up to this point, the case of CT = 2 has been and TQ is defined as the actual torque on the outer 
presented. And similar characteristics of flow patterns cylinder divided by the torque obtained with the 
in the number of eddies have been observed for the Couette velocity distribution [equation (20)]. When 
other geometric configurations of annuli. The cases the Rayleigh number is small, the net circulation and 

Fig. 7. Two-eddy and one-eddy flow patterns at Ra = 5000 
for wide and narrow annuli: (a.1) CT = 0.5, Re = 100; 
(a.2) D = 0.5, Re = 120; (b.1) CI = 5, Re = 100; (b.2) G = 5, 

Re = 130. 

of e = 0.5 (wide gap) and 0 = 5 (narrow gap) are 
presented in Fig. 7, which represents two- and one- 
eddy flow patterns. For u = 0.5, the convective fluid 
has more space to move around and the fluid motion 
and heat transfer characteristics tend to be more con- 
vective like. For e = 5, the fluid enclosed by the sepa- 
rating streamline of Y = 0 has less space to move 
about and the fluid motion and heat transfer behavior 
tend to be more conduction like. 

The dependencies of the critical Reynolds numbers 
at which transitions of flow patterns occur on the 
geometric parameters (a) are presented in Fig. 8 for 
Ra = 200, 1000 and 5000. Figure 8(a) represents the 
curves of the critical Reynolds number (Re,) between 
two- and one-eddy flows, and Fig. 8(b) represents 
those between one- and no-eddy flows. As e is 
increased, Re, between two- and one-eddy flows for 
Ra = 200 is slightly increased, but those have 
maximum value around 1 < u < 2 for Ra = 1000 and 
5000 [Fig. 8(a)]. However, Re, between one- and no- 
eddy flows is increased for all Rayleigh numbers [Fig. 
8(b)]. Overall, the transitional Reynolds numbers 
between two- and one-eddy flows for small Rayleigh 
number are not greatly affected by the geometrical 
parameter of the concentric annulus. 

The net circulation of fluid in the direction of cyl- 
inder’s rotation (Q = ]Y’, - Y, I), and the torque (TQ) 
acting on the outer cylinder are shown in Fig 9. The 
dimensionless torque is given by 
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@---T-- 
Ra= 1000 

Ob 
CJ Q/L) 

Ra=5000 
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< 2- //y---a 
G Ra= 1000 
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’ Ra=200 
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0 (Dr/L 1 

Fig. 8. Critical Reynolds numbers (Re,) at which transitions 
of flow patterns occur as functions of c for several Rayleigh 
numbers : (a) between two eddy and one eddy ; (b) between 

one eddy and no eddy. 

the torque are close to those of the Couette flow, 
Q = 0.5379, TQ = 1. As Rayleigh number becomes 
large, the net circulation decreases and approaches 
zero, but the torque increases due to the strong resist- 
ing buoyancy force near the outer cylinder. That is, 
the free-convective motion of fluid tends to block the 
circulation of fluid. This behavior can be also seen 
from the velocity distributions in Fig. 6. 

To see the effects of cylinder’s rotation on the local 
heat fluxes, the distributions of local Nusselt numbers 
at the inner (Nui) and other (Nu,) cylinders for 
Ra = 5000 and Ra = 5 x lo4 are shown in Figs 10 and 
11, with Q = 2. As the speed of rotation is increased, 
the points of maximum and minimum local heat fluxes 
at both of the inner and outer cylinders move in the 
direction of cylinder’s rotation for Ra = 5000 (Fig. 

0.6 

9 

0.4 7 

Q sTQ 
0.2 

3 

0 1 
2 3 4 

Fig. 9. Net circulation of fluid in the direction of cylinder’s 
rotation (Q = [‘I”,-Y’,I) and the torque (TQ) acting on the 
outer cylinder as functions of Rayleigh number when 0 = 2 

and Re = 20. 

“I I 

2 

NUi 

1 

free convection I 

Nu, 2 

(b) 

Fig. 10. Variation of local Nusselt number distributions at 
the inner (a) and outer (b) cylinders with respect to Reynolds 

number when u = 2 and Ra = 5000. 

10). When Ra = 5 x lo4 (Fig. 1 l), however, the points 
at the inner cylinder do not always move in the same 
direction: the curves of Re = 300, 400, 600 for 
maximum Nu, and those ofRe = 100, 200, 300,400, 
600 for minimum Nui show that the points move in 
the opposite direction of cylinder’s rotation. These 
phenomena correspond to the variation of flow pat- 
terns in Fig. 4. Apparently, the distributions of local 
Nusselt numbers for all Reynolds numbers are differ- 
ent from those of free convection. The cases of 
Re = 20, 50 in Fig. 10 and Re = 100 in Fig. 11, 
however, show that the integrated values of NW (or 
Nu,) are nearly identical to the free-convection values. 

Finally, the overall Nusselt numbers are shown in 
Fig. 12 as functions of Reynolds number for 
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Fig. 11. Variation of local Nusselt number distributions at 
the inner (a) and outer (b) cylinders with respect to Reynolds 

number when 0 = 2 and Ra = 5 x 104. 

Ra = 1000, 2000, 3000, 5000, 7000, 104, 2 x lo4 and 
5 x IO4 with (T = 2. The forced flow tends to stratify 
the temperature field in the radial direction. There is 
a kind of competition between the buoyancy-induced 
flow and the forced flow. For small Reynolds number, 
the Nusselt number is nearly identical to that of free 
convection, but above a certain Reynolds number it 
decreases rapidly and approaches unity. The range of 
the Reynolds number where there is no great variation 
in heat transfer becomes wide, as Rayleigh number 
increases. Comparing the map of flow regime (Fig. 5) 
with the curves of overall Nusselt numbers (Fig. 12), 
it can be seen that the region of Re in which there is 
little variation in heat transfer corresponds to the flow 
regime of strong ltwo eddies. As Re approaches the 
transitional Reynolds number between two-eddy and 
one-eddy patterns, however, the overall heat transfer 
is rapidly decreased. Figures 3 and 4 show that the 
isotherms of one..eddy flow constitute nearly con- 
centric circles. This implies that the overall Nusselt 
number at the walls for one-eddy flow is near the value 
of conduction stat!:. 

Mixed convection in a horizontal concentric annu- 
lus was numerically investigated for air with Pr = 0.7. 
The inner cylindes is hotter than the outer cylinder. 
The forced flow is induced by the cold outer cylinder 
which is rotating slowly with constant angular velocity 
with its axis at the center of the annulus. Investigations 
were made for various combinations of Ra, Re, and r~ 
in the range of Ra < 5 x 104, Re < 1500, and 
0.5 < Q ,< 5. The flow patterns can be categorized into 

Nu 

1 

mdw 
Fig. 12. Overall Nusselt numbers as functions of Reynolds 
number for several Rayfeigh numbers when D = 2: 
Ra = 1000,2000,3000, 5000,7000, 104, 2 x lo4 and 5 x 104. 
The values on the vertical dashed line represent the Nusseh 
numbers of pure free convection. The arrows on the curves 
of Nusselt number indicate the transition Reynolds numbers 

between two-eddy and one-eddy flow patterns. 

three types according to the number of eddies : two-, 
one- and no-eddy flows. A map of the three flow 
regimes was constructed on the Ra-Re plane. The 
transitional Reynolds number between two- and one- 
eddy flows for small Rayleigh number is not greatly 
affected by the geometrical parameter of the con- 
centric annulus (0.5 < 0 < 5). Net circulation of fluid 
in the direction of cylinder’s rotation is decreased as 
the Rayleigh number is increased. As the speed of the 
cylinder’s rotation is increased, the points of 
maximum and minimum local heat fluxes at both of 
the inner and outer cylinders move in the same direc- 
tion of cylinder’s rotation for small Rayleigh number, 
but for high Rayleigh number the points at the inner 
cylinder do not always move in the same direction. 
Overall heat transfer at the wall is rapidly decreased, 
as Re approaches the transitional Reynolds number 
between two- and one-eddy flows. 
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